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Abstract

The goal of this study was to examine the coupled vibration characteristics of a turbo-chiller rotor-
bearing system having a bull-pinion speed increasing gear, using a coupled lateral and torsional vibration
finite element model of a gear pair, and to provide the mechanism of the characteristic changes. The
investigations were systematically carried out by comparing the uncoupled and coupled natural frequencies
and their mode shapes with varying gear mesh stiffness, taking into account rotating speeds, and by
comparing the strain energies of the lateral and torsional vibration modes. The results show that some
modes may yield coupled lateral and torsional mode characteristics when the gear mesh stiffness increases
over a certain value and, in addition, that their associated dominant modes may be different from their
initial modes, i.e., a given dominant mode may change from an initial torsional one to a lateral one or vice
versa.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

It is known that for a general rotor system with a shaft diameter-to-length ratio, D=L; >0.01,
the coupled effect of the lateral and torsional vibrations may be neglected [1]. However, for a gear
box or geared rotor-bearing system, a coupled phenomenon of the lateral and torsional vibrations
may well arise, as the result of gear meshing effects [2]. In particular, for a turbomachine,
operating at high speed by means of a speed increasing gear system, the coupled lateral and
torsional vibration characteristics may be considerably different from those obtained by
uncoupled independent analyses. To achieve a highly reliable design that includes low vibration
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and noise characteristics for such a high performance machine, an investigation of the coupled
lateral and torsional vibration phenomenon which takes the gear meshing effect into
consideration would be desirable.
Lund [3] proposed an impedance matching scheme to solve the coupled torsional and lateral

vibration in a geared rotor system, utilizing the equations formulated independently by the Holzer
method for torsion and the Myklestad–Prohl method for lateral vibration. Iida et al. [4]
investigated the coupled torsional–flexural vibration of a flexible shaft driven by a simple spur
gear system. They applied a much simple lumped torsional and flexural model, not considering
lateral rotary degrees of freedom and treating the driving shaft as laterally rigid. Iwatsubo et al. [5]
analyzed the coupled lateral and torsional vibration of a spur-geared rotor system, utilizing the
transfer matrix method. In their analysis, the meshing gear teeth were modelled by a simple spring
and the gyroscopic moments of gears were not considered. Neriya et al. [6] investigated the
dynamic load on gear teeth due to coupling between the flexural and torsional vibrations in a
simple geared shaft system. In this study, they applied a coupled vibration model of a gear pair,
which took only the translational and torsional degrees of freedom into account. Kahraman et al.
[7] carried out an FE dynamic analysis of geared rotor systems, using a coupled vibration model
of a gear pair obtained by considering the translational, rotary and torsional degrees of freedom
but not the gyroscopic effect, and examined the effect of bearing flexibility on the dynamics of the
system. Rao et al. [8] proposed a general FE model of a geared rotor system, which considered the
gyroscopic effect, and performed coupled lateral and torsional free vibration analyses of a gear
box and a turbo-alternator rotor-bearing system connected by a speed reduction gear. They
investigated the effects of gear mesh stiffness on changes in natural frequencies and mode shapes.
Lee et al. [9], using a general coupled lateral and torsional vibration FE model of a gear pair,
performed a free vibration analysis of a turbo-chiller rotor-bearing system, which contained a
speed increasing gear, and investigated the effects of coupled vibrations within its operating speed
range. The above investigations treated, in part, some of the characteristic changes of free
vibrations which resulted from coupled lateral and torsional vibrations. However, in order to
clearly understand the mechanisms behind such characteristic changes, more systematic
approaches and detail analyses need to be carried out.
In this study, a general coupled lateral and torsional vibration FE model of a gear pair was used

to more precisely examine the coupled vibration characteristics of an 800 refrigeration ton turbo-
chiller rotor-bearing system containing a bull-pinion speed increasing gear and to provide the
mechanisms of the vibration characteristic changes. The investigations were systematically carried
out by comparing the uncoupled and coupled natural frequencies and their mode shapes on
varying gear mesh stiffness as well as by comparing the strain energies associated with the lateral
and torsional vibration modes.

2. Coupled FE model of gear pair

A displacement vector of a gear pair can be defined from the pressure line co-ordinate system
[6,7], as shown in Fig. 1, by

fqG0
g ¼ uG0

1 vG0

1 yG0

X1 yG0
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2 vG0

2 yG0

X2 yG0

Y2 yG0
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j kT
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where u; v; yX and yY are the lateral degrees of freedom and yZ the torsional degree of freedom.
Subscripts 1 and 2 indicate the driving and driven gears and superscript G denotes the gear itself.
O1 and O2 are centers of the gears when they are stationary, O0

1 and O0
2 centers of the gears when

they are rotating, and G1 and G2 geometrical centers of the gears. From the equilibria of the force,
bending moment and torque for each gear, the equations of motion of a gear pair can be
expressed by the following equations:
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Fig. 1. Co-ordinate systems of a gear pair at the pressure line.
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where M1 and M2 represent the masses, It and Ip the transverse and polar moments of inertia, km

and cm the gear mesh stiffness and damping, r1 and r2 the gear base circles, U1 and U2 the
unbalances, e1 and e2 the geometrical eccentricities, O1 and O2 the rotation speeds and y1 and y2
the rotation angles, respectively. Further, et sin ðN1O1tÞ represents the transmission error [10]
at a gear meshing point with N1 representing the driving gear teeth number. By simplifying
Eqs. (2)–(11), utilizing the relationships of yG

1 ¼ yG0

Z1 þ O1t; yG
2 ¼ yG0

Z2 þ O2t; r1O1 þ r2O2 ¼ 0;
yG0

Z15O1t and yG0

Z25O2t; and finally, by arranging them in a matrix form, the coupled equation of
motion of a gear pair can be expressed by

½MG0
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fqGg ¼ fQG0
g; ð12Þ

where ½MG0

; ½CG0


; ½GG0
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 and fQG0
g are the inertia, damping, gyroscopic and stiffness

matrices and the external force vector in the local pressure line co-ordinate system, respectively,
and are given in Appendix A by Eqs. (A.1)–(A.5). From Eqs. (A.1)–(A.5) it can be seen that the
coupling between the lateral and torsional degrees of freedom is due to the gear mesh stiffness and
damping. However, the gear mesh damping was not considered in the present study.
On the other hand, a generalized displacement vector of a gear pair can be defined with respect

to the global co-ordinate system, as shown in Fig. 2, by

fqGg ¼ uG
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1 yG
X1 yG

Y1 uG
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� �T
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The global coupled equation of motion of a gear pair can then be expressed by Eq. (14) through
a co-ordinate transformation:

½MG
f .qGg þ f½CG
 þ ½GG
gf ’qGg þ ½KG
fqGg ¼ fQGg; ð14Þ
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where the global inertia, damping, gyroscopic and stiffness matrices and the global force vector
are obtained by Eqs. (15)–(19) and constitute the coupled vibration FE model of a gear pair:

½MG
 ¼ ½T 
½MG0

½T 
T; ð15Þ

½CG
 ¼ ½T 
½CG0

½T 
T; ð16Þ

½GG
 ¼ ½T 
½GG0

½T 
T; ð17Þ

½KG
 ¼ ½T 
½KG0

½T 
T; ð18Þ

fQGg ¼ ½T 
fQG0
g; ð19Þ

where the co-ordinate transformation matrix, ½T 
; is obtained by considering the pressure angle, a;
and is given in Appendix A by Eq. (A.8).
Fig. 3 shows the structure of the coupled gear mesh stiffness matrix, ½KG
: kl and klc represent

the pure lateral component and the coupled component between the lateral vibrations and kt and
ktc the pure torsional component and the coupled component between the torsional vibrations,
respectively. In addition, ktl represents the coupled lateral and torsional component. In order to
construct an entire system equation, an assembly of the derived coupled vibration FE model of a
gear pair and the existing lateral and torsional vibration FE models of the shafts, bearings and
disks [11] may be readily implemented by placing the matrices of the pure lateral and torsional
vibrations diagonally and the matrices of the coupled vibrations off-diagonally (see Fig. 4, which
shows the arrangement of an entire assembled stiffness matrix).

Fig. 2. Global co-ordinate systems of a gear pair.
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3. Results and discussions

By applying the coupled lateral and torsional vibration FE model of a gear pair to an 800
refrigeration ton turbo-chiller rotor-bearing system, uncoupled and coupled free vibration
analyses and calculations of the strain energies of the lateral and torsional modes were carried out.
In this instance, uncoupled analyses were performed, excluding ktl ; kl and klc components from
½KG
 of Fig. 3. The exclusion of the kl and klc components assumes the complete isolation of any
gear meshing effect from the lateral vibrations. The coupled analyses were performed so as to
include all the components of ½KG
: Fig. 5 shows a schematic of the turbo-chiller in which the
motor driver, having a rated speed of 3420 r.p.m., drives the compressor impeller to a rated speed

Fig. 4. Structure of an entire assembled stiffness matrix.

1lk lck

lck 2lk

tlk

1tk tck
tlk

tck 2tk

Fig. 3. Structure of a coupled gear mesh stiffness matrix.
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of 11 845 r.p.m. through a bull-pinion speed increasing gear. In addition, the design gear mesh
stiffness, km ¼ 6:31� 108 N=m; of the speed increasing gear were calculated from the relationships
between the applied gear loads and the resulting bending and compressional displacements [12].

3.1. Natural frequency and mode versus gear mesh stiffness at a motor speed of 0 r.p.m.

3.1.1. Uncoupled analysis

Fig. 6 shows the uncoupled lateral and torsional natural frequencies versus the gear mesh
stiffness, km: As km increases, three natural frequencies change while others remain constant. The
former and latter represent the torsional and lateral natural frequencies, respectively. The first
torsional natural frequency begins to appear at around km ¼ 1� 104 N=m; increases greatly
between km ¼ 1� 106 and 1� 108N/m and thereafter reaches a constant value. The second

Fig. 5. Schematic of a 800 RT turbo-chiller rotor-bearing system.

Fig. 6. Natural frequencies versus gear mesh stiffness for an uncoupled analysis at 0 r.p.m.
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torsional natural frequency is nearly constant up to km ¼ 1� 107 N=m and thereafter increases
sharply, and the third torsional natural frequency increases slowly after km ¼ 1� 108 N=m: To
examine the change of the second torsional mode shape with increasing values of km; the modes at
km ¼ 6:31� 105 and 6:31� 109 N=m are shown in Fig. 7. It can be seen that the mode changes
from a first torsional mode shape (i.e., crossing the neutral axes once) to a second torsional mode
shape (i.e., crossing the neutral axes twice).

3.1.2. Coupled analysis

Fig. 8 shows the coupled lateral and torsional natural frequencies versus km in which the
designations of the torsional natural frequencies are given for convenience, having been
determined from the mode shapes at km ¼ 021� 106 N/m. Compared to the uncoupled analysis
results shown in Fig. 6, the lateral vibrations show changes mainly with high order natural
frequencies of over 20 000 r.p.m. above km ¼ 1� 108 N=m: The characteristics of the torsional

Fig. 7. Second torsional modes for the torsional analysis only at different gear mesh stiffnesses. (a) km=6.31� 105N/m;

(b) km=6.31� 109N/m.

Fig. 8. Natural frequencies versus gear mesh stiffness for a coupled analysis at 0 r.p.m.
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vibrations indicate that the second torsional natural frequency, in particular, decreases greatly: a
20% reduction in the coupled natural frequency (22 212 r.p.m.) over the uncoupled one
(27 763 r.p.m.) at the design gear mesh stiffness is observed. Fig. 9 shows the coupled second
torsional modes for the two values of km and their associated lateral modes. Even though km

increases to over 1� 108N/m, the torsional mode in Fig. 9(b) does not appear to cross the neutral
axis of the compressor shaft, being different from that shown in Fig. 7(b). At this time, the lateral
mode of the motor shaft in Fig. 9(b) also shows some change, compared to that in Fig. 9(a) at
km ¼ 6:31� 105 N=m: As a result, the lateral mode appears to grow due to the coupling effect for
values of km in excess of 1� 108N/m and eventually the torsional mode is retarded, resulting in
the torsional mode apparently not crossing the neutral axes twice and the corresponding natural
frequency decreasing greatly, compared to the uncoupled one.

3.2. Natural frequency and mode versus gear mesh stiffness at a motor speed of 3420 r.p.m.

3.2.1. Uncoupled analysis
Fig. 10 shows the uncoupled lateral and torsional natural frequencies versus km: As km

increases, the torsional natural frequencies show characteristics identical to those in Fig. 6 at

Fig. 9. Second torsional modes and corresponding lateral modes for a coupled analysis at different gear mesh

stiffnesses and 0 r.p.m. (a) km=6.31� 105N/m; (b) km=6.31� 109N/m.
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0 r.p.m. However, it can be seen that the gyroscopic effect has an influence on the lateral natural
frequencies.

3.2.2. Coupled analysis
Fig. 11 shows the coupled lateral and torsional natural frequencies versus km in which

the designations of the torsional natural frequencies are given, having been determined from

Fig. 10. Natural frequencies versus gear mesh stiffness for an uncoupled analysis at 3420 r.p.m.

Fig. 11. Natural frequencies versus gear mesh stiffness for a coupled analysis at 3420 r.p.m.
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the mode shapes at km ¼ 021� 106 N/m, as before. Compared to the uncoupled analysis
results shown in Fig. 10, the lateral vibrations show changes mainly with high order
natural frequencies of over 15 000 r.p.m. above km ¼ 1� 108 N=m: The characteristics of the
torsional vibrations are that, especially, the second torsional natural frequency again decreases
greatly: a 25% reduction in the coupled natural frequency (20 832 r.p.m.) over the uncoupled
one (27 763 r.p.m.) at the design gear mesh stiffness is observed. Fig. 12 shows the coupled
second torsional modes for the two values of km and their associated lateral modes. Even
though km increases to over 1� 108N/m, the torsional mode in Fig. 12(b) does not cross
the neutral axis of the compressor shaft. Similar to the case at 0 r.p.m., this has resulted
because the lateral mode, developed by the coupling effect at a relatively high km (over
1� 108N/m), has influenced the torsional mode. Further, at a motor speed of 3420 r.p.m.
the gyroscopic effect comes into play and eventually the lateral mode becomes greater. Therefore,
the torsional mode has been retarded to a greater extent and the coupled second torsional
natural frequency has decreased greater over that at 0 r.p.m. (5% more at the design gear mesh
stiffness).

Fig. 12. Second torsional modes and corresponding lateral modes for a coupled analysis at different gear mesh

stiffnesses and 3420 r.p.m. (a) km=6.31� 105N/m; (b) km=6.31� 109N/m.
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3.3. Strain energy of vibration mode

The strain energies of the associated lateral and torsional modes were separately calculated for
each natural frequency at the design gear mesh stiffness and a motor speed of 3420 r.p.m. Each
dominant mode, determined from the strain energies, was then compared to the initial mode.
Here, the initial mode designates the vibration mode type prevailing at km ¼ 021� 106 N/m
where the coupling effect due to gear meshing is negligible.
Table 1 presents the initial modes and the lateral and torsional strain energies for the uncoupled

analysis. It can be seen that the initial modes coincide with the dominant modes relative to the
strain energies over all the natural frequencies examined in this study. Table 2 shows the initial
modes and the lateral and torsional strain energies for the coupled analysis. At the seventh natural
frequency of 9573 r.p.m., since the torsional strain energy (0.001) is larger than the lateral strain
energy (8.55� 10	4), the mode is identified as the coupled first torsional mode, which coincides
with the initial mode. In the next case, at the ninth natural frequency of 20 832 r.p.m, since the
lateral strain energy (0.05) is larger than the torsional strain energy (0.01), the mode is identified as
a lateral one whereas the initial mode represents a torsional one. To investigate this peculiar
phenomenon of the coupled second torsional mode at the design gear mesh stiffness, Table 3
presents the second torsional natural frequency versus km and the associated lateral and torsional
strain energies. The torsional strain energy is larger than the lateral strain energy for values
below km ¼ 6:31� 106 N=m whereas the lateral strain energy becomes larger for values above
km ¼ 6:31� 107 N=m: Therefore, it can be concluded that a given dominant mode may change
from an initial torsional one to a lateral one as km increases. In this case, a coupled torsional mode
shape also undergoes some change (see Figs. 7(b) and 12(b)). On the other hand, at the 14th
natural frequency of 29 399 r.p.m., as shown in Table 2, the initial mode represents a lateral one
whereas the torsional strain energy (0.004) is larger than the lateral strain energy (0.003).

Table 1

Comparisons of lateral and torsional strain energies for an uncoupled analysis at km ¼ 6:31� 108 N/m and 3420 r.p.m.

Natural frequency (r.p.m.) Initial mode Strain energy

Lateral Torsional

1847 Motor-lateral 24.81 > 1.92e-21

2047 Motor-lateral 0.92 > 3.39e-23

3287 Motor-lateral 0.42 > 8.36e-24

6597 Impeller-lateral 0.12 > 2.43e-22

9223 Impeller-lateral 0.08 > 7.17e-23

9780 Torsional 8.32e-26 o 0.002

19 161 Impeller-lateral 0.003 > 1.16e-24

21 025 Motor-lateral 0.05 > 9.53e-25

22 649 Motor-lateral 0.05 > 9.21e-26

24 032 Motor-lateral 0.06 > 3.66e-24

25 520 Impeller-lateral 0.002 > 7.29e-25

27 067 Motor-lateral 0.05 > 8.90e-25

27 763 Torsional 7.25e-27 o 7.74e-4

30 396 Torsional 0.67e-27 o 2.83e-4
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Table 2

Comparisons of lateral and torsional strain energies for a coupled analysis at km ¼ 6:31� 108 N/m and 3420 r.p.m.

Natural frequency (r.p.m.) Initial mode Strain energy

Lateral Torsional

191 Motor-lateral 0.22 > 0.03

1849 Motor-lateral 0.52 > 0.08

2047 Motor-lateral 0.72 > 0.08

3288 Motor-lateral 0.40 > 0.16

6839 Impeller-lateral 0.08 > 0.04

9254 Impeller-lateral 0.06 > 3.26e-4

9573 Torsional 8.55e-4 o 0.001

19 099 Impeller-lateral 0.006 > 3.27e-4

20 832 Torsional 0.05 > 0.01

22 668 Motor-lateral 0.08 > 0.001

24 119 Motor-lateral 0.04 > 0.002

25 015 Motor-lateral 0.0113 > 0.0108

26 091 Impeller-lateral 0.003 > 5.12e-4

29 399 Motor-lateral 0.003 o 0.004

30 281 Torsional 0.001 o 0.01

Table 3

Comparisons of lateral and torsional strain energies associated with the coupled 2nd torsional mode as a function of km

at 3420 r.p.m.

km (N/m) Natural frequency (r.p.m.) Strain energy

Lateral Torsional

6.31e3 12 836 2.92e-10 o 0.07

6.31e5 12 923 2.36e-6 o 0.07

6.31e6 13 792 6.69e-5 o 0.01

6.31e7 20 075 0.004 > 0.002

6.31e8 20 832 0.05 > 0.01

6.31e9 20 850 0.12 > 0.08

Table 4

Comparisons of lateral and torsional strain energies associated with the coupled 14th lateral mode as a function of km at

3420 r.p.m.

km (N/m) Natural frequency (r.p.m.) Strain energy

Lateral Torsional

6.31e3 27 067 0.03 > 1.96e-11

6.31e5 27 071 0.05 > 8.18e-8

6.31e6 27 108 0.04 > 2.15e-5

6.31e7 27 500 0.02 > 1.64e-4

6.31e8 29 399 0.003 o 0.004

6.31e9 29 690 0.001 o 0.003
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Similarly, Table 4 presents the 14th coupled natural frequency versus km and the associated lateral
and torsional strain energies. The lateral strain energy is larger than the torsional strain energy for
values below km ¼ 6:31� 107 N=m whereas the torsional strain energy becomes larger for values
above km ¼ 6:31� 108 N=m: Therefore, it can also be concluded that a given dominant mode may
change from an initial lateral one to a torsional one as km increases.

3.4. Campbell diagram analysis

Fig. 13 shows a Campbell diagram for the uncoupled analysis at the design gear mesh stiffness.
As expected, the torsional natural frequencies remain constant regardless of the rotating speed.
Fig. 14 shows a Campbell diagram for the coupled analysis in which a distinction between the
lateral and torsional vibrations has been made from a mode type at km ¼ 021� 106 N/m, as
before. A comparison of Figs. 13 and 14 shows that for low order lateral whirl natural frequencies
below 15 000 r.p.m. there are no practical effects associated with a speed change whereas for high
order lateral whirl natural frequencies above 15 000 r.p.m. some effects associated with a speed
change are evident. In addition, the coupled first, second and third torsional natural frequencies
decrease by 1.28%, 5.05% and 0.71%, respectively, again due to the growth of the coupled lateral
modes as the motor speed increases from 1000 to 3420 r.p.m.

4. Conclusions

By applying a coupled lateral and torsional vibration finite element model of a gear pair, this
paper provides a detailed examination of the coupled vibration characteristics of a turbo-chiller
rotor-bearing system containing a bull-pinion speed increasing gear. The results show that some

Fig. 13. Campbell diagram for an uncoupled analysis at km ¼ 6:31� 108 N=m:
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modes may yield coupled lateral and torsional mode characteristics as the gear mesh stiffness
increases over a certain value and, moreover, that their associated dominant modes may be
different from their initial modes, i.e., a given dominant mode may change from an initial
torsional one to a lateral one or vice versa. In particular, for the case of the second torsional
natural frequency, the torsional strain energy decreases due to a retardation of the torsional mode
in conjunction with a growth in the lateral mode at the design gear mesh stiffness and eventually
the coupled torsional natural frequency decreases by 25% over the uncoupled one at the rated
speed.

Appendix A

½MG0

 ¼

MG
1 0 0 0 0 0 0 0 0 0

0 MG
1 0 0 0 0 0 0 0 0

0 0 IG
t1 0 0 0 0 0 0 0

0 0 0 IG
t1 0 0 0 0 0 0

0 0 0 0 MG
2 0 0 0 0 0

0 0 0 0 0 MG
2 0 0 0 0

0 0 0 0 0 0 IG
t2 0 0 0

0 0 0 0 0 0 0 IG
t2 0 0

0 0 0 0 0 0 0 0 IG
p1 0

0 0 0 0 0 0 0 0 0 IG
p2

2
66666666666666666664

3
77777777777777777775

; ðA:1Þ

Fig. 14. Campbell diagram for a coupled analysis at km ¼ 6:31� 108 N=m:
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½CG0

 ¼ cm

0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 	1 0 0 r1 r2

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
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0 	1 0 0 0 1 0 0 	r1 	r2

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 r1 0 0 0 	r1 0 0 r21 r1r2

0 r2 0 0 0 	r2 0 0 r1r2 r22

2
66666666666666666664

3
77777777777777777775

; ðA:2Þ

½GG0

 ¼
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0 0 	IG
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p2O2 0 0 0
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2
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3
777777777777777777775

; ðA:3Þ

½KG0

 ¼ km

0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 	1 0 0 r1 r2
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0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 	1 0 0 0 1 0 0 	r1 	r2
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0 r1 0 0 0 	r1 0 0 r21 r1r2
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2
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3
77777777777777777775

; ðA:4Þ
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fQG0
g ¼

U1O2
1 cosO1t

U1O2
1 sinO1t þ F1

0

0

U2O2
2 cosO2t

U2O2
2 sinO2t 	 F1

0

0

Fse1 cosO1t 	 F1r1

Fse2 cosO2t 	 F1r2

2
66666666666666666664

3
77777777777777777775

; ðA:5Þ

where

F1 ¼ km½e2 sinO2t 	 e1 sinO1t þ et sinðN1O1tÞ


þ cm½e2O2 cosO2t 	 e1O1 cosO1t þ etN1O1 cosðN1O1tÞ
 ðA:6Þ

and

Fs ¼ km½	vG0

1 	 r1O1t þ vG0

2 	 r2O2t
 þ cm½	’vG0

1 	 r1O1 þ ’vG0

2 	 r2O2
 	 F1; ðA:7Þ

½T 
 ¼ cm

	S C 0 0 0 0 0 0 0 0

	C 	S 0 0 0 0 0 0 0 0

0 0 	S C 0 0 0 0 0 0

0 0 	C 	S 0 0 0 0 0 0

0 0 0 0 	S C 0 0 0 0

0 0 0 0 	C 	S 0 0 0 0

0 0 0 0 0 0 	S C 0 0

0 0 0 0 0 0 	C 	S 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1

2
66666666666666666664

3
77777777777777777775

: ðA:8Þ
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